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Small three-dimensional motions of a slightly viscous stratified fluid, generated by vertical and torsional oscillations of part of 
the surface of an infinite vertical cylinder of arbitrary cross-section, are investigated. The asymptotic method of boundary functions 
is used to analyse the structure of periodic motions. It is shown that two types of boundary layers are formed, one of which possesses 
the properties of the Stokes boundary layer in homogeneous fluid, while the other one, namely, the internal wave boundary layer, 
is a specific feature of heterogeneous media, whose thickness depends on both the wave frequency and the buoyancy frequency. 
On changing to the case of a homogeneous fluid, the viscous and internal boundary layers merge. © 2004 Elsevier Ltd. All rights 
reserved. 

During the past few years considerable attention has been devoted to analysing the boundary layers 
that are produced both on the bounding surfaces and on the free surface of a perturbed viscous fluid 
[1]. Consideration of the boundary effects enables one to construct exact solutions of the problem of 
generating two-dimensional and three-dimensional internal waves in a linear [2] and non-linear [3] 
formulation, which considerably extends the number of scenarios of the non-linear mechanisms by which 
internal waves are formed and evolve [4]. In this connection it is of interest to carry out a more detailed 
calculation of the parameters of the wave layers on a periodically moving surface in a continuously 
stratified fluid. Although this problem had been investigated by Stokes in the case of a homogeneous 
viscous fluid, a similar analysis for three-dimensional periodic motions in a continuously stratified fluid 
has not been carried out until now. 

The system of equations that describes the periodic motions of a continuously stratified slightly viscous 
media relates to a class of singularly disturbed equations, for solving which a number of asymptotic 
and numerical methods have been developed. In the present paper the structure of periodic motions 
is analysed by the asymptotic method of boundary functions [5]. The solution is constructed in the form 
of an asymptotic expansion in a small parameter, which possesses the properties of a degenerate system 
inside the domain obeys the boundary conditions due to the introduction, into the asymptotic form, of 
boundary functions that decay exponentially with distance from the boundary. The viscosity is chosen 
as the small parameter of the asymptotic expansion. This technically simple method of analysing 
singularly perturbed problems has been successfully used to investigate fluid oscillations, the propagation 
of sound and other problems of fluid dynamics [6-8]. 

1. F O R M U L A T I O N  OF THE P R O B L E M  

The linearized system of equations in the Boussinesq approximation, which describes small three- 
dimensional motions of an incompressible viscous stratified fluid with an impurity in a gravitational 
field, has the form 

~ u  
P0~" = - gradp + P0vAu - pge z 

OP + d9o 
~--~ u3--~- z = 0, divu = 0 

(1.1) 
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where u = (u> u2, bt3) is the velocity vector, p and 9 are the dynamic pressure the density, p0(z) = 
P00exp(-z/A) is the unperturbed density, A is the buoyancy scale, g is the acceleration due to gravity, 
v is the kinematic viscosity and ez is the unit vector directed along the Z axis. 

The motion of the fluid occurs due to harmonic oscillations with a frequency m of the part of a vertical 
cylinder of arbitrary cross-section, whose axis coincides with the direction of the gravity field, where 
the boundary conditions on the cylinder surface have the  form 

u n i t  = 0, u ,lF = Ul(x,y ,z)e  -ira', ux21 r = U2(x,y,z)e -i°~t (1.2) 

where n is the outward normal to the fairly smooth surface of the cylinder F, "q and "c2 are the unit 
vectors oriented at each point of the surface F along the principal orthogonal directions, and, Ui(x, y, 
z) and U2(x, y, z) are given functions. 

Introducing dimensionless coordinates, time and velocity as the ratio of the corresponding physical 
quantities to their constant values characteristic for the given problem, and assuming that the dimension- 
less viscosity v is equal to Re -1, from system (1.1) we obtain the following dimensionless system (for 
convenience all the notation is preserved) 

-imPoU = - gradp + vPoAU - pge z 

@o (1.3) 
- i m p + u  3 -  = O, divu = 0 dz 

To reduce the algebraic manipulations, we introduce into our analysis a representation of the velocity, 
with the help of which the amplitude of the velocity is defined as follows: 

u = V x (ezW) + V x V x ( e z ~ )  (1.4) 

Using representation (1.4), from system (1.3) we obtain the governing system of the problem for the 
function q~ and q5 

~2 ~2 
[m2A - / ( o v a  2 - N2A2JdP = 0 ((0- ivA)Ud = 0;  A 2 = - -  + - -  (1.5) 

o3x 2 ~y2 

where N 2 is the square of the dimensionless buoyance frequency. 
Taking (1.4) into account, from conditions (1.2) we obtain the boundary conditions for system (1.5) 

whose implicit form will be presented below. 

2. O S C I L L A T I O N S  OF THE C Y L I N D E R  IN A M E D I U M  W I T H  
LOW V I S C O S I T Y  

If V is a small dimensionless parameter: v = e 2, 0 < e ~< 1, from system (1.5) we obtain 

[f02A - i(0g 2 A 2 -  N2A2](I  } = 0,  ( f 0 - i e2A) t r t *  = 0 (2.1) 

System (2.1) is singularly perturbed, since the differential operators occurring in it contain small 
parameters at higher-order derivatives. 

On changing to an ideal fluid (e = 0) we obtain the degenerate system 

( o - LcBz 2 + 1 - A 2 dl 2)r = = 

The operator L0 depends on the parameter m, and we therefore consider two cases: if [co I > N, the 
operator L0 is of elliptic type, whereas, if ] m[ < N, this operator will be a hyperbolic operator. From 
the physical point of view these two cases are distinguished by the possibility of the existence of stable 
waves in the part of space far from the cylinder boundary. 

To describe the solution near the boundary, we introduce a local system of coordinates (r, cyl, r~2), 
where r is the distance from the point M(r, ~ ,  %) to the boundary F along the normal M0M to 
F(M0 ~ F), and %, r~ 2 are the curvilinear coordinates of the point M 0 and F. If the vicinity 



Three-dimensional periodic boundary layers in a continuously stratified fluid 393 

F 8 ---- ( 0 _ < r < 8 )  X ( 0 < l J l _ < Y . l ) X ( - o o < ( Y 2 _ < + o o )  

is sufficiently small (that is, the parameter 8 is sufficiently small), a one-to-one correspondence exists 
between the coordinates (x, y, z) and (r, ~1, G2). 

From condition (1.2) and taking into account representation (1.4), we obtain the boundary conditions 
for system (2.1) 

/-/2a~ a-%Or Jr = 0, U-/20%O~ ~ l r  = "1(~1' %) 

1 [ / )H2/)O+ H 820  __~_.~ ( 1 ~ O ) ~  
H 2 2 L ~  r 2 a r  2 q- ~)0. l l v H 2 a ( ~ l j J  F -= --U2(l~l, 0 2 )  

(2.3) 

where H2 is the Lam6 parameter (H1 =/ /3  = 1), and 0, ua(G1, (Y2) and u2(O'l, I32) a re  the components 
of the vector of the velocity of motion of the boundary in the local system of coordinates. The functions 
ul((Yl, ~z) and u2(~1, ~2), defined on the cylinder surface, are fairly smooth and finite with respect to 
the variable ~2, and it is assumed that 

~2 

lim f u~ (%, q)dll 
~2 __) ~ d I 

= 0  

Relations (2.3) specify the values of the projections of the vector of the velocity of motion of the 
boundary on to the axis of local system of coordinates. 

Following the procedure employed in [5], the asymptotic form of the solution of problem (2.1) with 
boundary conditions (2.3) will be sought in the form 

O(x, y, z, e) = Or(x, y, z, e) + HO(p, al, a2, e) = 

E i r i e l-I~O(9, = e O i (x, y, z) + ~ 61, (Y2) 
i = 0  i = 0  

W(x, y, z, e) FIW(9, •1, (~2, E) E i = = e IliU?( p, ~ ,  %); 
i = 0  

r 
[3 = - 

E 

(2.4) 

where Or(x, y, z, e) is the regular expansion, which describes the solution far from the boundary and 
FIUd(9, ~1, ~2, e) and 110(9, ~1, G2, e) are the boundary layer corrections, which make a considerable 
contribution to the solution near the boundary. 

Substituting expansions (2.4) into system (2.1) we separate the equations for the regular and boundary 
layer terms, in the equations for the boundary functions we change to new variables, make the extension 
r = e9, and then expand the coefficients of the equations in powers of e. To find the terms of the boundary 
layer expansions, we have the system 

E 4 e(2 o  (2.5) 

cO-i y elNt H ~  = 0 
/ = 0  A 

(2.6) 

where Mt and Art are linear differential operators of order no higher than the second and b(0) is the 
zeroth term in the expansion of coefficient b = H21OH2/Or in powers of e. 

In a similar manner the boundary conditions are obtained from conditions (2.3) 

b2{I )r 1 b 2 l"I {I) 1 
Ia(0)%-~l~ + 0--~20n + ~O--~2Og_jr = 0 (2.7) 
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2 r F ...03 (o + n o )  l a n e  1 
k atu) 0-~-2~ e 0p JF = U1(0-1'0-2) (2.8) 

I ~ 1 03HO 0 2 0  r 1 02I-[O 
b(O) + ~ b ( O ) - - ~  + ~03n 2 + e~-''To3 0 + 

r 2 r 1 
+ a(O)d,(O)a(O_~llUO ) + ae(o)O (~___~+fIO) / = -u2(0-,, ~z) 

00-1 Jr 

(2.9) 

In the next approximation we arrive at the system 

which has the solution 

U2(0-1, 0"2) L2p ~2/~-_ N2 
H20(9, 0-1, 0-2) = z e , ~'2 = ~ - - ( i -  1) (2.12) 

0 4 --  N2) 0-~22I-I2 O = i o  4H2 O --  ((,0 2 0 

0p 0p 

032H2(I3 = --U2(0-1, 0-2), II20(P --~ '~') -') 0 
TO 2 9- 0 

From this we obtain 

u1(0-1, o2) x,p ~ ' 
1-IlUfl(P'0-1'0-2)= ~1 e , %1 = ( t - l )  (2.11) 

Equating terms 
approximations 

FI00 = 0, l-IiO = 0, Fl0W = 0 

The boundary layer function HaW is determined from relations (2.6), (2.8) and (2.10) 

32H1~ 
~ l - I i ~ - i ~  = 0 0p 2 

31-I1 tI~ = -Ul(0-1, O2), HlUfl(p--)~o)--)0 
"03P p=o 

H(P, Ol,0-2)----)0 or p ~ o o  (2.10) 

of like powers of e in relations (2.5)-(2.10), we find in the zeroth and first 

The terms of the regular expansion (N(1 = 0, 1, 2) are defined from the problems of the form 

03Z ~ + 1 -  ~-~ A 2 • t = 0, ~ r = ft(0-1, 0-2) 

When [co[ < N the solution of problem (2.13) that vanishes at infinity can be constructed using the 
additional condition 

lim I ft(0-~, rl)drl = 0 (2.14) 

where a(0) and dl(0) are the zeroth terms in the expansions of the coefficients a = H21, dl = 03H21/00-1 
in powers of e. 

In addition, we require that all H-functions tend to zero as p --+ oo: 
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Assuming henceforth that the surface F is a Lyapunov surface, we will seek the solution of problem 
(2.13) that decays at infinity in the form of a Fourier integral 

0~ = f } bttk(P)Gk(M' P)eikzdlPdk (2.15) 
- ~  y 

where g is the line of intersection of the surface F and the plane z = const, and Gk(M, P) is Green's 
function of the second boundary-value problem for Helmholtz's equation outside a circle of a certain 
radius a k that lies wholly inside the contour y. The function GK(M , P) exists and can be represented 
explicitly as 

1 [ (1) J'o(Ckak) (1) (1) 
Gk(M, P) = ~-~Ho (ckRMp) H(ol)'(ckak) Ho (ckro)Ho (ckr)- 

J'n(ckak) (1) (1) r -2 L ~ H, (ckro)H n (c k )cosn(q~-q00) 1 
=IH~ (ckak) ] 

where 

- _ p k l c 0  RMp = ~ / ( x - ¢ ) 2 + ( y - ¢ )  2, e ( { , ¢ ) e  y, c k N2/_~_~ 2 

H 0) (ckr) is the Hankel function of the first kind, Jn(Ckr) is the Bessel function, and (r, q)), (r0, %) are 
coordinates of the points M and P in a polar system of coordinates. The potential density bttk(P) obeys 
Fredholm's equation of the second kind 

+ ~  G 2 

OGk(P, 1 -i~% 
7~llk(Po)-~ p'Ik(P) On,no PO)dIe = 2-n ; I fl(GIPo ' rl)e dT]dG2' P0 e y (2.16) 

%e0 is the coordinate of the point P0 on the contour 7 and O/~n~,~o is the derivative along the inward normal 
to Y at the point P0. 

Since the kernel of integral operator, which occurs in Eq. (2.16), is weakly polar one and the 
corresponding homogeneous equation has only a trivial solution for a special choice ak, Eq. (2.16) is 
uniquely solvable. 

In the case when I col > N the solution of problem (2.13), which decays at infinity, is sought in the 
form 

+ ~  

r R ikz Ikl~ ~P, : f}glk(P)Ko(ck Me)e dlpdk, ck -  ~ 2  N z 

where KO(CkRMp ) is the McDonald function. The density glk(P) obeys an equation that differs from (2.16) 
by substituting Ko(CkRppo) for Gk(P, Po). Further investigations are carried out in a similar way. 

Note that to extract the unique physical solution of problem (2.13) in the case when [co[ > N, it is 
sufficient to pose the condition for the solution to decay at infinity (unlikely the case when ] m] < N, 
when the principle of limiting absorption [9] must be used). 

A certain limitation of the asymptotic method for investigating the problem of internal wave radiation 
should be noted. Within the framework of the linear mathematical model when using the boundary 
function method, the properties of the solutions of regular problems, which describe the behaviour of 
the fluid at points far from the boundary, are determined by the properties of the degenerate operator 
L0, which corresponds to an ideal fluid. 

Since Ilxq5 = 0, the function ~ is determined from problem (2.13) in whichf0((yl, (5"2) = 0. According 
to formula (2.15) the homogeneous problem (2.13) has only a trivial solution. Consequently, q~ = 0. 

For the regular term q~ we obtain problem (2.13), where 

_[8zI]2~ brl~7 
= /a'  ap + a (O)TE- ,  ]o =o 
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and Hltt J, H2~-I j are defined by formulae (2.11) and (2.12). Since the functionfl(ol, 02) obeys boundary 
condition (2.14), a unique solution of this problem exists, which can be presented in the form (2.15). 

From Eq. (2.6) and boundary conditions (2.8) and (2.10) we find 

o32H2 ~ OhHlgfl 
3P 2 +io)H2Ud = -b(0) 0p 

0H2W = a(0) 02(I)~ , H2W(p ~ oo) ---) 0 
p = 0 002001 r 

and hence 

I ~lla(O) 2 ~ r +  29~[ ] 
1 O • l b(O) ~.,p 

H2tI / (p ,  (3" 1, 02)  = --7"~(~lp -- 1)UI(Ol, 02)  e 

The regular term of the second approximation satisfies problem (2.13) where 

f2(ol,  o2) = -[a--6~2ap + a t o ) - - ~ ,  ]0 : ° 

For a unique determination of the function O~ it is necessary to find the boundary function of the third 
approximation FIBO. 

The equation for finding gI30 is obtained by equating the coefficients of e in Eq. (2.5). The corresponding 
boundary conditions follow from (2.9) and (2.10). We have 

0 4  2 

32I'I3 (I) = 

VIo=o 
(2.17) 

an2* ...ao~ + a(O)r.~2,/_ + - - - ~ - j  - a (O)  d~ = g ( ~ , ,  o2)  = -b(0)( '~n tu)a6-~ ao, ) an 2 Jr 

I-I3~( 9 ~ oo) ~ 0 

The solution of problem (2.17) has the form 

l-I3~(P) = C e  ~.20 _ b(0)u2(ol, 02)(2i01)~2 _ (012 _ N2))pe~.2p 
2 2 . 4 2k2(01 - N 2) _ 4t01~. 2 

where 

lIg,ol, 
L2L_ 

b(0)u2(01, 02)(2i01~ 2 - (012 _ N2)) 1 

+ ~,2(---'-~ -5-  N2--'-) -- 2i~)~,-------~ "] 

Since the coordinates (r, Ol, 132) were introduce locally, the H-functions have meaning only in a small 
vicinity of the boundary F. For their smooth extension to the whole region beyond the cylinder, one 
can use the well-known standard procedure [5]. 

3. CONCLUSIONS 

1. The solution of the problem of forming periodic disturbances constructed above asymptotically exactly 
satisfies the system of equations and boundary conditions. The sums 
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3 1 

eO~(x, y, z) + ~ elIItO(p, o 1, O2) and ~ elIlt~P(p, (I1, (Y2) 
t=O /=0  

exist and satisfy Eqs (2.1), boundary conditions (2.7) and (2.9) with accuracy 0@; 2) and boundary 
condition (2.8) with accuracy O(e). 

2. In a viscous stratified fluid, unlike the case of a homogeneous one, two boundary layers are formed, 
which confirms the conclusions reached in [2], obtained by another method. A viscous wave boundary 
layer, which exists both in homogeneous and heterogeneous fluid, is described by the boundary layer 
expansion I-I~(9 , (Yl, (Y2, E) that begins from the term of order ~/v. The thickness of the layer is 

8 v = 2 ~  

The boundary layer correction 170(9, 151, (~2, E) describes the internal wave boundary layer, which is 
a specific feature for a stratified fluid. This expansion begins from the term of order v. The thickness 
of the layer is 

lv ~1¢.02 _ U 2 ] 

On changing to a homogeneous fluid (N ~ 0) the viscous and internal boundary layers merge: 
lv = ~v = 2x/2x/2x/2x/2x/2x/2~ and this agrees with the conclusions reached in [2]. 

3. If we reject the consideration of linearized equations, all the structural elements of the flows begin 
to interact with each other, and when investigating the dynamics of heterogeneous media the complete 
non-stationary system (1.1) must be analysed. 

4. The method of boundary functions, the use of which is based on extracting small parameters in 
the system and reducing it to a system of lower dimensionality far from the disturbing surface, enables 
one to successfully solve both non-stationary and non-linear problems, which this enables one to 
investigate not only the process by which the wave motion is established, but also new properties of 
the solutions caused by the non-linearity of the system (contrast structures). 
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